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Abstract

Targeted energy transfer (TET) in a 2dof system consisting of primary linear oscillator and nonlinear energy sink (NES)

with non-polynomial potential is investigated. Use of non-polynomial and even non-analytic potential functions is

motivated by needs of practical design. It is demonstrated that the ‘‘complexification–averaging’’ technique of analysis

developed before can be successfully extended for these cases with proper modifications. The procedure is illustrated by

examples involving softening (non-polynomial) and piecewise-linear (non-analytic) NES.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Targeted energy transfer (TET), i.e. almost irreversible passive transfer of mechanical energy from linear
substructure to essentially nonlinear attachment (nonlinear energy sink (NES)) has attracted a lot of attention
of researches in the few last years [1–6]. In majority of these models, stiff nonlinear attachments (commonly,
purely cubic spring) were used. In accordance, the methods of analysis were crafted for systems with cubic
(or, in general, polynomial [3]) nonlinearity and linear damping.

Still, in the same time, it was demonstrated that some designs of the NES may be rather advanta-
geous for the TET and do not fall into the class of the polynomial nonlinearities. For instance,
it was demonstrated [7] that the NES with a piecewise-linear potential can exhibit profound TET. Besides,
in many applications—especially those where geometric nonlinearity is involved—the nonlinear springs
are soft.

The main goal of this paper is to extend existing methods for analysis of the TET in 2dof systems for the
case of the NES with non-polynomial potentials. In Section 2, the general framework of the analysis is
considered. In Sections 3 and 4, the methodology outlined is tested for two benchmark problems—NES with a
soft nonlinearity and a piecewise linear NES.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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2. Description of the model and general analysis

Let us consider the following system [3], which consists of linear oscillator and small strongly nonlinear
attachment and is described by the set of equations:

€y1 þ �lð _y1 � _y2Þ þ y1 þ �F ðy1 � y2Þ ¼ 0,

� €y2 þ �lð _y2 � _y1Þ þ �F ðy2 � y1Þ ¼ 0, ð1Þ

where e51 is a small parameter which establishes the order of magnitude for coupling, damping and mass of
the nonlinear attachment, l is a damping coefficient. If there exists a small (of order e) damping on the primary
oscillator, it also may be taken into account; in current treatment it does not change the situation qualitatively
and is omitted for the sake of brevity. The coupling terms are considered to be symmetric and therefore the
function F(x) is adopted to be odd:

F ðxÞ ¼ �
qV ðxÞ

qx
¼ �F ð�xÞ. (2)

Mass of the attachment is considered to be small related to the mass of the main oscillator. Stiffness and
damping of the attachment are adopted to depend only on relative displacement of the attachment and the
main mass. Both these conditions have obvious motivation from the viewpoint of possible applications: NES
is designed to have small mass compared with the main system and does not need alternative grounding.

The treatment follows general framework developed in paper [3], but with some essential modifications.
Change of variables

v ¼ y1 þ �y2; w ¼ y1 � y2 (3)

physically corresponds to transition to ‘‘center of mass—relative displacement’’ coordinates and allows
reducing Eq. (1) to the following form:

€vþ
vþ �w

ð1þ �Þ
¼ 0,

€wþ
vþ �w

1þ �
þ ð1þ �Þl _wþ ð1þ �ÞF ðwÞ ¼ 0. ð4Þ

It should be mentioned that the damping terms have disappeared from the first equation of Eq. (4) due to
supposed gradient character of the damping.

The goal of present investigation is the exploration of damped nonlinear normal modes of Eq. (1) in the
vicinity of 1:1 resonance. It means that both variables, v and w, are supposed to have frequency close to unity.

Complex variables [8] are introduced according to following relationship:

j1 expðitÞ ¼ _vþ iv,

j2 expðitÞ ¼ _wþ iw. ð5Þ

As it is demonstrated in Ref. [3], if the dynamical flow is considered in the vicinity of 1:1 resonance
manifold, then functions j1 and j2 may be considered as functions of slow time scale. Formal applicability of
such procedure for essentially nonlinear system beyond the conditions of the averaging theory is discussed in
Ref. [9].

Formal averaging of Eq. (4) with account of anzats (5) with respect to the fast time scale is possible if the
function F(w) is presented in a form of Fourier series:

F ðwÞ ¼ F �
i

2
ðj2 expðitÞ � j�2 expð�itÞ

� �
¼
X1

j¼�1

f jðj2;j
�
2Þ expðijtÞ. (6)
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Averaged Eq. (4) will take the form

_j1 þ
i�

2ð1þ �Þ
ðj1 � j2Þ ¼ 0,

_j2 þ
i

2ð1þ �Þ
ðj2 � j1Þ þ

lð1þ �Þ
2

j2 þ ð1þ �Þf 1ðj2;j
�
2Þ ¼ 0, ð7Þ

where f1 is the first Fourier coefficient:

f 1 ¼
1

2p

Z 2p

0

F �
i

2
j2 expðitÞ � j�2 expð�itÞ
� �� �

expð�itÞdt: (8)

The integral may be computed, for instance, with the help of residues. In order to establish the general shape
of function f1 one can adopt than in some vicinity of zero the function F(w) is analytic and may be presented as
Taylor series:

F ðwÞ ¼
X1
j¼0

ajw
2jþ1. (9)

Shape of series (9) takes into account the oddity of function F. With account of Eqs. (5) and (6), by using
binomial expansion for each term in Eq. (9) and collecting the coefficients of exp(it), one obtains

f 1 j2;j
�
2

� �
¼ �

ij2

2

X1
k¼0

ð�1=4ÞkakCkþ1
2kþ1 j2

�� ��2k
¼ �

ij2

2
G j2

�� ��2� �

Ckþ1
2kþ1 ¼

ð2k þ 1Þ!

k!ðk þ 1Þ!
. ð10Þ

It is easy to see that if series (9) converges in some vicinity of zero, then series (10) also converges in some
vicinity of zero and therefore real analytic function G(z) is defined in this vicinity. If series (9) ceases to
converge (it will be demonstrated below, that such situation may be of essential interest), one can still use
analytic continuation of function G; obviously, the shape of function f1 will remain the same. Finally, the
averaged equations may be written in a form

_j1 þ
i�

2ð1þ �Þ
ðj1 � j2Þ ¼ 0,

_j2 þ
i

2ð1þ �Þ
ðj2 � j1Þ þ

lð1þ �Þ
2

j2 �
ið1þ �Þj2

2
G j2

�� ��2� �
¼ 0. ð11Þ

System of Eq. (11), generally speaking, is not solvable and further simplifications are necessary. It should be
mentioned that system (11) is integrable for l ¼ 0, but we are interested in the damped case l40 (in fact, we
suggest that lbe and therefore l is considered to be of order unity in the framework of current treatment).
System (11) may be analyzed by multiple scales approach:

d

dt
¼

q
qt0
þ �

q
qt1
þ � � � . (12)

For order O(1) expansion (12) yields

qj1

qt0
¼ 0) j1 ¼ j1ðt1Þ,

qj2

qt0
þ

i

2
j2 þ

l
2
j2 �

ij2

2
G j2

�� ��2� �
¼

i

2
j1. ð13Þ

Fixed points F(t1) of Eq. (13) are computed as

i

2
Fþ

l
2
F�

i

2
G Fj j2
� �

F ¼
i

2
j1ðt1Þ. (14)
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Quite obviously, Fðt1Þ ¼ limt0!þ1j2ðt0; t1Þ if this fixed point is stable and Fðt1Þ ¼ limt0!�1j2ðt0; t1Þ if the
fixed point is unstable. It is easy to demonstrate that Eq. (13) does not have any limit sets besides the fixed
points (for instance, with the help of Bendixson criterion—see details in Appendix A).

Solution of Eq. (14) requires knowledge of the coefficient l and function G. Let us consider some stable
(with respect to time scale t0) solution F(t1). At time scale O(e) the first equation of system (11) taken in the
limit t0-N yields

qj1

qt1
þ

i

2
ðj1 � FÞ ¼ 0.

By substituting Eq. (14) to this expression, one obtains equation for F with respect to the slow time scale:

q
qt1

F� ilF� FG Fj j2
� �� �

þ
l
2
F�

i

2
FG Fj j2
� �

¼ 0. (15)

By splitting to modulus and argument parts

F ¼ Nðt1Þ expðidðt1ÞÞ,

one finally obtains

qN

qt1
¼

�lN

2ð1þ l2 þ G2ðN2Þ � 2GðN2Þ � 2N2G0ðN2Þ þ 2N2GðN2ÞG0ðN2ÞÞ
,

qd
qt1
¼

�l2 þ GðN2Þ � G2ðN2Þ � 2N2GðN2ÞG0ðN2Þ

2ð1þ l2 þ G2ðN2Þ � 2GðN2Þ � 2N2G0ðN2Þ þ 2N2GðN2ÞG0ðN2ÞÞ
. ð16Þ

Quite surprisingly, system (16) is completely integrable regardless the shape of function G(z). The first
equation may be trivially reduced to quadrature and the solution of the second one requires one more
integration if the first one is already solved. Of course, technically such computations may be extremely
cumbersome, especially for complicated shapes of G(z) but the qualitative behavior of the solutions will
remain relatively simple due to this integrability.

The approximation of the fast time (13) will describe the response of the system to initial conditions, when
the system approaches the resonance manifold, and Eq. (16) describes the slow-time evolution of the system at
the manifold. Eq. (13) is, generally speaking, non-integrable, but still it has only two-dimensional state space
and therefore the behavior of the solutions may be conveniently analyzed. Thus, the approximation developed
above allows description of both initial-period asymptotics (boundary layer) and slow-time asymptotics
(main solution). In the next sections, the methodology is applied for analysis of two different types of the
nonlinear attachments.
3. NES with softening nonlinearity

In many applications, the nonlinearity is soft and cannot be described by simple polynomial potential
function. For the sake of modelling, the potential of the attachment is chosen in the form

V ðxÞ ¼ k lnð1þ x2Þ (17)

providing linear limit with stiffness coefficient 2ek in Eq. (1) for small deformations z and softening while z

grows. The shape of the potential function (17) is presented at Fig. 1.
Equations describing the system dynamics are

€y1 þ y1 þ �lð _y1 � _y2Þ þ
2�kðy1 � y2Þ

1þ ðy1 � y2Þ
2
¼ 0,

� €y2 þ �lð _y2 � _y1Þ þ
2�kðy2 � y1Þ

1þ ðy1 � y2Þ
2
¼ 0, ð18Þ

where y1 and y2 are the displacements of the primary oscillator and the attachment, respectively.
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Fig. 1. The shape of potential function (17)—soft nonlinearity without possibility of breakdown, k ¼ 1.

Fig. 2. Relative instantaneous energy in the attachment, A ¼ 1.3.
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3.1. TET—numeric demonstration

The phenomenon of the TET may be demonstrated numerically if system (18) is modelled with initial
conditions y1ð0Þ ¼ 0; _y1ð0Þ ¼ A; y2ð0Þ ¼ 0; _y2ð0Þ ¼ 0. In order to demonstrate the targeted transfer, we plot
the relative instantaneous energy R ¼ Eatt=ðEprimary þ EattÞ stored in the attachment with respect to total
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Fig. 3. Relative instantaneous energy in the attachment, A ¼ 0.8.
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energy of the system, where

Eprimary ¼
1
2
_y2
1 þ y2

1

� �
,

Eatt ¼ � 1
2
_y2
2 þ k lnð1þ ðy1 � y2Þ

2
Þ

� �
ð19Þ

for two different values of initial velocity A and parameters of the system e ¼ 0.05, k ¼ 2, l ¼ 0.2 (Figs. 2
and 3):

It is clear that for sufficient initial excitation the system exhibits vigorous targeted transfer of energy to the
light attachment (for t�30 about 90% of the total energy is concentrated at the attachment, whereas the linear
characteristic time of the system is 1/el ¼ 100). The mechanism of the energy transfer is resonance capture,
which occurs due to soft nonlinearity. At small deformations, the linear frequency of the attachment is
o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2k�=�

p
¼ 2. Due to softening, when the deformations are large enough, the attachment can achieve 1:1

resonance with primary oscillator in the vicinity of unit frequency. Then, due to damping, the system is taken
out from the resonance and energy remains at the attachment.

As it was already mentioned above, analytic description of the process of targeted transfer has been
performed by combined method of complexification and averaging [8]. This method works directly only for
polynomial-type nonlinearities, which is not the case in the problem under consideration. For Eq. (18), one
may be tempted to use similar method, by presenting the nonlinear potential of the attachment as Taylor series
with respect to y1�y2 and keeping few first terms. Such approach is not valid if one is interested in the regime
where displacements can be comparatively large (of course, it is the case for the problem of the targeted
transfer) since the Taylor series will converge only for jy1 � y2jo1. In order to circumvent this obstacle, we are
going to use the method of Fourier-series expansion presented in Section 3. After averaging and computing
the Fourier coefficient in accordance with (10, 11) one gets the following slow-flow equations:

_j1 þ
i�

2ð1þ �Þ
ðj1 � j2Þ ¼ 0,

_j2 þ
i

2ð1þ �Þ
ðj2 � j1Þ þ

lð1þ �Þ
2

j2 �
ið1þ �Þ

2
G j2

�� ��2� �
j2 ¼ 0,

GðzÞ ¼
4k

z
1�

1ffiffiffiffiffiffiffiffiffiffiffi
1þ z
p

� �
. ð20Þ
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Fig. 4. Comparison between initial flow (solid line) and averaged flow (dotted line). A ¼ 1.3.
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Function G(z) is computed from the expression for potential (17), with account of Eqs. (2), (5) and (8).
Details of computation are presented in Appendix B.

Validity of the averaging procedure for description of the targeted transfer is illustrated at Fig. 4
by direct comparison between simulated flows of systems (18) and (20) with appropriate correspond-

ing initial conditions, computed with the help of anzats (2). We compare the values Z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1ðtÞ � y2ðtÞÞ

2
þ ð _y1ðtÞ � _y2ðtÞÞ

2
q

(solid line) and Zaverage ¼ jj2j (dotted line).

The averaged flow, as expected, does not reflect the fast oscillations of the transient response, but clearly
predicts the characteristic shape of the response curve, at least at important initial stages of the process
(time scale of order O(1/e)). Therefore, despite non-polynomial nonlinear function, the approach based on
Fourier-series expansion (which may be treated as enhanced harmonic balance with respect to the fast time
scale) yields rather reliable results.

3.2. Asymptotic analysis—order O(1)

Asymptotic analysis at order O(1) is performed with the help of Eq. (13) with function G(z) defined
by Eq. (20):

qj2

qt0
þ

i

2
j2 þ

l
2
j2 �

i

2
G jj2j

2
� �

j2 ¼
i

2
j1,

j1 ¼ const;

GðzÞ ¼
4k

z
1�

1ffiffiffiffiffiffiffiffiffiffiffi
1þ z
p

� �
. ð21Þ

Splitting to modulus and argument yields

j2 ¼ Pðt0Þ expðigðt0ÞÞ,

j1 ¼ C expðiGÞ. ð22Þ

Choice of proper initial conditions for Eqs. (21) and (22) is a non-trivial issue. The approximation under
consideration is related to time scale O(1), but is not relevant for the very beginning of the transfer process,
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before the flow approaches the 1:1 resonance manifold. One can suggest that the phases of dynamic variables
change very rapidly whereas the average amplitudes remain almost unchanged. Therefore, in order to establish
the critical initial amplitude for the TET one can adopt C ¼ A, G ¼ 0 (this choice is not significant), P(0) ¼ A.
The initial phase g(0) cannot be defined in the framework of the averaged equations. For the sake of
estimation, we will accept that the TET occurs if for all values of the initial phase 0og(0)op the averaged flow
for time scale O(1) corresponds to excited NES (the sense of the latter statement will be elucidated below).
Thus, system (21) is reduced to the form

qP

qt0
¼ �

l
2

Pþ
1

2
A sin g,

qg
qt0
¼ �

1

2
þ

2k

P2
1�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P2

p
 !

þ
A

2P
cos g,

Pð0Þ ¼ A; 0ogð0Þop. ð23Þ

It is easy to demonstrate that Eq. (23) can have one or three fixed points, depending on values of k, A and l.
If the fixed point is single it is stable node; pair of saddle and additional node may appear depending on
Fig. 5. Phase portrait of system (23), A ¼ 0.5: (a) general shape and (b) trajectory with g(0) ¼ p.

Fig. 6. Phase portrait of system (23), A ¼ 1.2: (a) general shape and (b) trajectory with g(0) ¼ p.
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parameters of the system. Typical phase portraits of system (23) and phase trajectories for initial condition
g(0) ¼ p are presented in Figs. 5 and 6.

For A41.2 every trajectory with initial phase 0og(0)op is attracted to the upper fixed point and thus the
NES is excited, providing a necessary condition for the TET. Direct numeric simulations of system (18)
with initial conditions y1ð0Þ ¼ 0; _y1ð0Þ ¼ A; y2ð0Þ ¼ 0; _y2ð0Þ ¼ 0 was performed for 1oAo1.5. The efficient
TET was revealed for A41.18, in satisfactory agreement with the results of the asymptotic analysis
presented above.

3.3. Asymptotic analysis—order O(e�1)

For the case of the NES potential (17), approximation (16) for time scale O(1/e) is written as

qN

qt1
¼

�lN

2 1þ l2 þ G2 N2
� �

� 2G N2
� �

� 2N2G0 N2
� �

þ 2N2G N2
� �

G0 N2
� �� � ,

qd
qt1
¼

�l2 þ G N2
� �

� G2 N2
� �

� 2N2G N2
� �

G0 N2
� �

2 1þ l2 þ G2 N2
� �

� 2G N2
� �

� 2N2G0 N2
� �

þ 2N2G N2
� �

G0 N2
� �� � ,

GðzÞ ¼
4k

z
1�

1ffiffiffiffiffiffiffiffiffiffiffi
1þ z
p

� �
. ð24Þ

Qualitative behavior of solutions of system (24) is determined by the structure of the denominator of both
equations. Namely, if it does not have zeros and therefore does not change sign (and is positive—it is easy to
check it near N ¼ 0), then N(t1) decreases monotonously. Still, if the denominator will have zeros, the
solutions will become singular. Physically, it means that the flow will be forced to leave the 1:1 resonance
manifold. In this case, the energy absorption is greatly enhanced. It is possible to prove that for any value of
k40.5 (which naturally corresponds to possibility of 1:1 resonance capture in the system under consideration)
there exists interval of values for the damping coefficient l 2 ð0; lmaxÞ for which the slow flow described by
Eq. (24) will exhibit breakdown, leading to efficient dissipation of energy. Value of lmax versus k is presented
in Fig. 7.

So, against an intuition, in order to get efficient dissipation one should keep the dissipation coefficient small
enough. This point is illustrated in Fig. 8, where the dissipation of energy in system (18) is plotted versus time
for k ¼ 2 and A ¼ 1.3 for two values of damping (below and above the curve in Fig. 7).
Fig. 7. Critical value of damping for breakdown of the resonance manifold.
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Fig. 8. Energy dissipation for different values of l (total energy in the system versus time, thick line—l ¼ 1.2, thin line—l ¼ 0.2).

Fig. 9. Relative instantaneous energy in the attachment with piecewise linear potential, A ¼ 0.6.
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One can conclude that the choice of optimal damping value is crucial for efficient design of the NES.

4. NES with piecewise linear potential

In a recent paper [7], it was demonstrated that the effect of TET may be achieved with the help of NES
with a piecewise linear potential. Such design may be preferable since it is comparatively easy in production.
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We consider system (1) with force F described by a piecewise linear continuous function:

F ðzÞ ¼

bzþ ðb� aÞa; zo� a;

az; jzjoa;

bz� ðb� aÞa; z4a:

8><
>: (25)

To illustrate the TET, system (1) with NES force described by Eq. (25) is simulated with initial conditions
y1ð0Þ ¼ 0; _y1ð0Þ ¼ A; y2ð0Þ ¼ 0; _y2ð0Þ ¼ 0. For the sake of simulation, we choose the values of parameters
a ¼ 1, a ¼ 0.5, b ¼ 2, l ¼ 0.2, e ¼ 0.05. Similarly to Section 3, one should study the energy distribution
between the primary mass and the NES. The results of this simulation for two different values of A are
presented in Figs. 9 and 10.

One can easily recognize characteristic onset of the TET, despite the fact that the ‘‘only’’ nonlinearity in the
system is due to the matching of different linear response functions.

The next question is whether the analytic framework developed in Section 2 is suitable for description of the
TET in this system with non-analytic potential of the NES. For this sake, the Fourier component of the force
should be computed in accordance with Eqs. (8)–(10). Simple but somewhat lengthy calculations yield

f 1 j2;j
�
2

� �
¼

�
ia
2
j2; jj2joa

�
i

2p
j2

b 2 arccos
a

jj2j
þ

2a

jj2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a2

jj2j
2

s !
þ

þa p� 2 arccos
a

jj2j
�

2a

jj2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a2

jj2j
2

s !
�

4a

jj2j
ðb� aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a2

jj2j
2

s
0
BBBBB@

1
CCCCCA

8>>>>>>>>>><
>>>>>>>>>>:

; jj2j4a. (26)

As in Section 3, we check the validity of the averaging procedure for description of the TET by direct
comparison between simulated flows of systems (1) with force (25) and (7) combined with (26) with
appropriate corresponding initial conditions, computed with the help of anzats (2). We compare the values

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ðtÞ � y2ðtÞ
� �2

þ _y1ðtÞ � _y2ðtÞ
� �2q

(solid line) and Zaverage ¼ jj2j (dotted line) (Fig. 11).
Fig. 10. Relative instantaneous energy in the attachment with piecewise linear potential, A ¼ 0.8.
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Fig. 11. Comparison between initial flow (solid line) and averaged flow (dotted line) for the system with piecewise linear NES. A ¼ 0.9.
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Clearly enough, the correspondence is satisfactory and therefore the NES with non-analytic
response law (25) may be analyzed with the help of the averaging approach. Function in Eq. (26)
has rather complicated shape and therefore it is difficult to handle it analytically. Still, numeric calculation
of the roots of Eq. (16) is still straightforward and structure of the solutions is qualitatively the same as
in the case of the softening nonlinearity, including finite interval of the damping values where the TET
is possible.
5. Concluding remarks

The results presented above allow us to conclude that the NESs with soft or piecewise linear potential may
be a rather suitable candidate for dynamical systems involving the TET. Transient responses of these systems
with non-polynomial nonlinearities may be successfully treated with the help of Fourier expansion with
respect to fast time scale and subsequent averaging. Asymptotic analysis based on small parameter related to
the mass ratio yields reliable analytic description of the transfer process and allows optimization of the
parameter values.

The method developed in the paper has its obvious restrictions. First of all, the averaging based on the first
Fourier component of the nonlinear force term has some chances to yield a reliable description of the
process only in the conditions of 1:1 resonance—if other resonances are significant, more components
will be involved. Still, the time scale of the problem is limited by damping and one cares only about the first
stage of the transient response. There exists a range of initial conditions in which it will be governed by 1:1
resonance [5].

The other complication may arise if the analytic shape of the response forces is not known—for instance,
they are obtained from measurements. In this case, the possible approach may be to compute the function G(z)
numerically, using Eq. (8). Validity and accuracy of the developed approach in this situation requires
additional study.
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Appendix A

In this appendix, Bendixson criterion is applied to Eq. (13) and absence of limit cycles is demonstrated. At
time scale t0, system (13) describes dynamics of variable j2 in a two-dimensional state space:

qj2

qt0
þ

i

2
j2 þ

l
2
j2 �

ij2

2
G jj2j

2
� �

¼ Q;

Q ¼
i

2
j1 ¼ const:

(A.1)

By splitting j2 to real and imaginary part, one obtains

j2 ¼ q1 þ iq2; q1;2 2 R,

qq1

qt0
¼

1

2
q2 �

l
2

q1 �
q2

2
G q2

1 þ q2
2

� �
þReðQÞ ¼ h1ðq1; q2Þ,

qq2

qt0
¼ �

1

2
q1 �

l
2

q2 þ
q1

2
G q2

1 þ q2
2

� �
þ ImðQÞ ¼ h2ðq1; q2Þ. ðA:2Þ

Divergence of the vector field on plane (q1, q2) determined by Eq. (A.2), is expressed as

div~h ¼
qh1

qq1

þ
qh2

qq2

¼ �lo0. (A.3)

So, the divergence of the vector field is always negative; therefore, in accordance with the Bendixson
criterion, the limit cycles are absent.

Appendix B

Let us compute the expression for function G(z) for the response force of the attachment described by
potential (17)

F ðwÞ ¼ V 0ðwÞ ¼
2kw

1þ w2
, (B.1)

f 1 ¼
1

2p

Z 2p

0

F �
i

2
j2 expðitÞ � j�2 expð�itÞ
� �� �

expð�itÞdt

¼
k

p

Z 2p

0

�i=2 j2 expðitÞ � j�2 expð�itÞ
� �

1þ �i=2 j2 expðitÞ � j�2 expð�itÞ
� �� �2 expð�itÞdt: ðB:2Þ

By splitting into modulus and argument parts j2 ¼ C expðigÞ, one obtains

�
i

2
j2 expðitÞ � j�2 expð�itÞ
� �

¼ �
iC

2
ðexpðiðtþ gÞÞ � expð�iðtþ gÞÞ ¼ C sinðtþ gÞ. (B.3)

Substitution of (B.3)–(B.2) yields

f 1 ¼
k

p

Z 2p

0

C sinðtþ gÞ

1þ C2 sin2ðtþ gÞ
expð�itÞdt ¼

k expðigÞ
p

Z 2p

0

C sinðtþ gÞ

1þ C2 sin2ðtþ gÞ
ðcosðtþ gÞ � i sinðtþ gÞÞdt

¼
k expðigÞ

p
ðI1 � iI2Þ

I1 ¼

Z 2p

0

C sinðtþ gÞ cosðtþ gÞ

1þ C2 sin2ðtþ gÞ
dt ¼ 0

I2 ¼

Z 2p

0

C sin2ðtþ gÞ

1þ C2 sin2ðtþ gÞ
dt ¼

1

C

Z 2p

0

1�
1

1þ C2sin2ðtþ gÞ

� �
dt ¼

2p
C

1�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C2
p

 !
. ðB:4Þ
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Finally, combining all above results, one obtains

f 1 ¼ �
ij2

2

4k

jj2j
2

1�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jj2j
2

q
0
B@

1
CA. (B.5)

Comparing this expression with Eq. (10), one obtains the shape of G(z) in Eq. (20).
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